skip to main content


Search for: All records

Creators/Authors contains: "LaBorde, Margarite L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The mixedness of one share of a pure bipartite state determines whether the overall state is a separable, unentangled one. Here we consider quantum computational tests of mixedness, and we derive an exact expression of the acceptance probability of such tests as the number of copies of the state becomes larger. We prove that the analytical form of this expression is given by the cycle index polynomial of the symmetric group S k , which is itself related to the Bell polynomials. After doing so, we derive a family of quantum separability tests, each of which is generated by a finite group; for all such algorithms, we show that the acceptance probability is determined by the cycle index polynomial of the group. Finally, we produce and analyse explicit circuit constructions for these tests, showing that the tests corresponding to the symmetric and cyclic groups can be executed with O ( k 2 ) and O ( k log ⁡ ( k ) ) controlled-SWAP gates, respectively, where k is the number of copies of the state being tested. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024